E. Bardalen, J. Bergli, Y. M. Galperin
Recently a local mean field theory for both eqilibrium and transport
properties of the Coulomb glass was proposed [A. Amir et al., Phys. Rev. B 77,
165207 (2008); 80, 245214 (2009)]. We compare the predictions of this theory to
the results of dynamic Monte Carlo simulations. In a thermal equilibrium state
we compare the density of states and the occupation probabilities. We also
study the transition rates between different states and find that the mean
field rates underestimate a certain class of important transitions. We propose
modified rates to be used in the mean field approach which take into account
correlations at the minimal level in the sense that transitions are only to
take place from an occupied to an empty site. We show that this modification
accounts for most of the difference between the mean field and Monte Carlo
rates. The linear response conductance is shown to exhibit the Efros-Shklovskii
behaviour in both the mean field and Monte Carlo approaches, but the mean field
method strongly underestimates the current at low temperatures. When using the
modified rates better agreement is achieved.
View original:
http://arxiv.org/abs/1202.2744
No comments:
Post a Comment