Elad Cohen, Michael Rosenbluh, Ido Kanter
An analogy between crowd synchrony and multi-layer neural network architectures is proposed. It indicates that many non-identical dynamical elements (oscillators) communicating indirectly via a few mediators (hubs) can synchronize when the number of delayed couplings to the hubs or the strength of the couplings is large enough. This phenomenon is modeled using a system of semiconductor lasers optically delay-coupled in either a fully connected or a diluted manner to a fixed number of non-identical central hub lasers. A universal phase transition to crowd synchrony with hysteresis is observed, where the time to achieve synchronization diverges near the critical coupling independent of the number of hubs.
View original:
http://arxiv.org/abs/1204.3712
No comments:
Post a Comment