Thursday, May 31, 2012

1110.6242 (Stefan Boettcher et al.)

Finite-Size Corrections for Ground States of Edwards-Anderson Spin
Glasses
   [PDF]

Stefan Boettcher, Stefan Falkner
Extensive computations of ground state energies of the Edwards-Anderson spin glass on bond-diluted, hypercubic lattices are conducted in dimensions d=3,..,7. Results are presented for bond-densities exactly at the percolation threshold, p=p_c, and deep within the glassy regime, p>p_c, where finding ground-states becomes a hard combinatorial problem. Finite-size corrections of the form 1/N^w are shown to be consistent throughout with the prediction w=1-y/d, where y refers to the "stiffness" exponent that controls the formation of domain wall excitations at low temperatures. At p=p_c, an extrapolation for $d\to\infty$ appears to match our mean-field results for these corrections. In the glassy phase, w does not approach the value of 2/3 for large d predicted from simulations of the Sherrington-Kirkpatrick spin glass. However, the value of w reached at the upper critical dimension does match certain mean-field spin glass models on sparse random networks of regular degree called Bethe lattices.
View original: http://arxiv.org/abs/1110.6242

No comments:

Post a Comment