Monday, July 2, 2012

1206.6997 (Cecile Monthus et al.)

Random Transverse Field Ising model in $d=2$ : analysis via Boundary
Strong Disorder Renormalization
   [PDF]

Cecile Monthus, Thomas Garel
To avoid the complicated topology of surviving clusters induced by standard Strong Disorder RG in dimension $d>1$, we introduce a modified procedure called 'Boundary Strong Disorder RG' where the order of decimations is chosen a priori. We apply numerically this modified procedure to the Random Transverse Field Ising model in dimension $d=2$. We find that the location of the critical point, the activated exponent $\psi \simeq 0.5$ of the Infinite Disorder scaling, and the finite-size correlation exponent $\nu_{FS} \simeq 1.3$ are compatible with the values obtained previously by standard Strong Disorder RG.Our conclusion is thus that Strong Disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze in more details the RG flows within the two phases to show explicitly the presence of various correlation length exponents : we measure the typical correlation exponent $\nu_{typ} \simeq 0.64$ in the disordered phase (this value is very close to the correlation exponent $\nu^Q_{pure}(d=2) \simeq 0.63$ of the {\it pure} two-dimensional quantum Ising Model), and the typical exponent $\nu_h \simeq 1$ within the ordered phase. These values satisfy the relations between critical exponents imposed by the expected finite-size scaling properties at Infinite Disorder critical points. Within the disordered phase, we also measure the fluctuation exponent $\omega \simeq 0.35$ which is compatible with the Directed Polymer exponent $\omega_{DP}(1+1)=1/3$ in $(1+1)$ dimensions.
View original: http://arxiv.org/abs/1206.6997

No comments:

Post a Comment