Jakub Otwinowski, Stefan Boettcher
When beneficial mutations are relatively common, competition between multiple unfixed mutations can reduce the rate of fixation in well-mixed asexual populations. We introduce a one dimensional model with a steady accumulation of beneficial mutations. We find a transition between periodic selection and multiple-mutation regimes. In the multiple-mutation regime, the increase of fitness along the lattice bears a striking similarity to surface growth phenomena, with power law growth and saturation of the interface width. We also find significant differences compared to the well-mixed model. In our lattice model, the transition between regimes happens at a much lower mutation rate due to slower fixation times in one dimension. Also the rate of fixation is reduced with increasing mutation rate due to the more intense competition, and it saturates with large population size.
View original:
http://arxiv.org/abs/1103.5685
No comments:
Post a Comment